β-CETOPHOSPHONATES : PRECURSEURS D'ANALOGUES DU LTB4.

Thierry DURAND ^a, Ph. SAVIGNAC ^b, Jean-Pierre GIRARD ^a, Roger ESCALE ^a et Jean-Claude ROSSI ^{a*}.

(a) Laboratoire de Chimie des Médiateurs et Physicochimie des Interactions Biologiques associé au C.N.R.S., Université de Montpellier I, Faculté de Pharmacie, 15 Avenue Charles Flahault, F-34060 MONTPELLIER, FRANCE; (b) Laboratoire de Chimie du Phosphore et des Métaux de Transition, Ecole Polytechnique, F-91128 PALAISEAU, FRANCE.

Abstract: The simultaneous addition to a suspension of HNa in THF at 50°C of β -ketophosphonates, $\underline{5}$ or $\underline{6}$ (obtained by acylation of cupromethyl phosphonate $\underline{2}$) in the Horner-Wadsworth-Emmons reactions and saturated aldehydes provides good yields of α,β -unsaturated ketones. This has been applied successfully in the synthesis of keto-12 leukotriene LTB₃ <u>12a</u>.

Parmi les réactifs d'homologation des composés carbonylés en cétones α,β -insaturées, les β -cétophosphonates sont souvent utilisés^{1,2} (réaction HWE.³⁻⁵). Nous les avons retenus pour réaliser la synthèse des 12-céto-LTB3 et -LTB4, analogues du leucotriène LTB3 ⁶ et LTB4 ^{7,8}, par condensation avec les aldéhydes appropriés. Le schéma rétrosynthétique montre que les β -cétophosphonates permettent d'introduire simultanément la partie lipophile C11-C20 (liaison Δ_{14-15} saturée ou insaturée) et le groupement oxo en 12.

Aucun travail n'ayant été consacré, à notre connaissance, aux β -cétophosphonates δ_{ε} -insaturés, nous avons choisi de préparer $\underline{5}$ et $\underline{6}^9$ (Schéma 1), par voie organocuivreuse ² qui est la seule susceptible de préserver les deux groupes méthylènes activés et d'éviter l'isomérisation de la double liaison dans le cas de $\underline{6}$.

Schéma 1. Réactifs: (i) BuLi (1,05 éq) / THF, -70°C; (ii) CuI (1,05 éq) , -40°C; (iii) THF, -40°C

<u>Tableau</u>	:	Réactions	HWE
----------------	---	-----------	-----

Entrée	Phosphonate	Aldehyo	de	Conditions	de réactio	Produits	(c) Rendement (%)	
(1)		1	HNa 1,1éq	; THF; 0°C 15	imin. et 24	5°C 1h.	8a	60
	6	I	11	11		11	<u>8b</u>	25
	<u>5</u>	11	Ħ	"		n	<u>12a</u>	non isolé
(2)	<u>5</u>	Z	HNa	1,1éq; THF; 5	50°C, 1h.		<u>8a</u>	98
	6	Z	"	**	**		<u>8b</u>	90
(3)	<u>5</u>	_9	**	"	н		<u>10a</u>	85
	<u>6</u>	<u>9</u>	"	"	"		<u>10b</u>	64
(4)	<u>5</u>	11	"	H			<u>12a</u>	25
	6	11	1*	"	н		<u>12b</u>	non isolé
(5)	5	2	LiCl 1,06q;	DBU 0,8éq; T	HF; 25°C	, 24h.	<u>. 8a</u>	82
	٤	Z	19	n	n	н	<u>_8b</u>	80

(c): Tous les composés ont des constantes physiques (360 MHz RMN ¹H) en accord avec les structures proposées. Seul l'isomère E est obtenu à partir de ces aldéhydes. On réalise le couplage entre l' α -cuprométhyl-phosphonate 2 et les chlorures d'acides 3 et 4. Le couplage entre 2 et 3 s'effectue avec un haut rendement (95%) sans interférence du méthylène activé. Par contre, tous les essais d'optimisation du couplage entre 2 et 4 (55%) ont échoué, en raison de la présence d'un méthylène activé dans 4 et de l'éventuelle compétition entre nucléophilie et basicité de l' α -cuprométhyl-phosphonate.

La réactivité des β -cétophosphonates $\underline{5}$ et $\underline{6}$ a été examinée vis-à-vis d'aldéhydes saturé (éthyl-2 butyraldéhyde $\underline{7}$) ou α -fonctionnalisé $\underline{9}$ ⁷(Schéma 2) et d'aldéhyde diènique $\underline{11}^{11}$ (Schéma 2). Les résultats des réactions HWE, sont consignés dans le Tableau. Le déroulement de la réaction est suivi par RMN du ³¹P ¹⁰, permettant d'observer la disparition des espèces phosphorées (β -cétophosphonate et énolate de sodium) et l'apparition du diéthylphosphate de sodium (EtO)₂P(O)ONa.

Si l'on opère dans des conditions classiques (préformation de l'anion stabilisé et condensation de l'aldéhyde \mathbf{Z} à température ambiante) les rendements sont moyens avec $\mathbf{5}$ et non reproductibles avec $\mathbf{6}$ (compris entre 0 et 25%): le 12-céto-LTB3 <u>12a</u> n'est pas obtenu avec l'aldéhyde <u>11</u>(entrée 1). Suivant des conditions proches de Masamune¹² (THF au lieu de CH3CN, entrée 5), on observe d'une part une identité de structure et de stabilité des espèces anioniques lithiée et sodique¹⁰, et d'autre part une élimination du diéthylphosphate de lithium plus lente, même si le rendement à partir de \mathbf{Z} est meilleur.

Ces résultats nous ont amenés à effectuer l'addition simultanée des précurseurs phosphoniques $\underline{5}$ ou $\underline{6}$ et de l'aldéhyde à une suspension de HNa dans le THF à 50°C. A cette température, il y a consommation immédiate de l'anion formé, qui n'est jamais observé dans les spectres de RMN du ³¹P. Seuls sont présents les précurseurs phosphoniques $\underline{5}$ ou $\underline{6}$ et le diéthylphosphate de sodium formé au fur et à mesure de l'avancement de la réaction.

Dans ces nouvelles conditions, on constate que les aldéhydes $\underline{7}$ et $\underline{9}$ réagissent complétement en quelques minutes avec les phosphonates $\underline{5}$ ou $\underline{6}$, sans isomérisation de la double liaison Z de $\underline{6}$ (entrées 2 et 3) et que l'aldéhyde insaturé $\underline{11}$ (entrée 4), se condense uniquement avec le phosphonate saturé $\underline{5}$ avec un rendement moyen (25%; non optimisé) en 12-céto-LTB3 $\underline{12a}$ ¹³.

La cétone conjuguée <u>12b</u> résultant de la condensation de l'aldéhyde insaturé <u>11</u> (entrée 4) avec le phosphonate insaturé <u>6</u> n'a jamais été isolée bien que l'on observe par RMN du ³¹P, et dès l'addition d'aldéhyde, la formation du diéthylphosphate de sodium (EtO)₂P(O)ONa, résultant d'une réaction de HWE.

L'explication la plus raisonnable pourrait être l'instabilité des produits formés dans le milieu réactionnel.

Remerciements : Les auteurs remercient la L.N.F.C.C. pour l'aide financière apportée à l'un d'entre nous (Th.D.) ainsi que le Dr. P. Breuilles pour son aide et de fructueuses discussions.

Réferences et Notes:

- R.K. BOECKMAN, J.M.A. WALTERS et H. KOYANO, Tetrahedron Letters, 1989, 30, 4787-4790; P. SAMPSON, G.B. HAMMOND et D.F. WIEMER, J. Org. Chem., 1986, 51, 4342-4347; J. MOTOYOSHIYA, M. MIYAJIMA, K. HIRAKAWA et T. KAKURI. J. Org. Chem., 1985, 50,1326-1327et les références citées.
- 2 F. MATHEY et Ph. SAVIGNAC, Tetrahedron, 1978, 34, 649-654.
- 3 B.E. MARYANOFF et A.B. REITZ, Chem. Rev. 1989, 89, 863-927.
- 4 W.S. WADSWORTH, Org. React, 1977, 25, 73-253;
- 5 B.J. WALKER, dans "Organophosphorus Reagents in Organic Synthesis", J.I.G. CADOGAN, Ed., 1975, Acad, Press, pp. 155-205.
- B. SPUR, A. CREA, W. PETERS et W. KONIG., Arch. Pharm., 1985, 318, 225 228;
 T. NAKAMURA, M. NAMIKI et K. ONO, Chem. Pharm. Bull., 1987, 35, 2635-2645.
- 7 E.J. COREY, A. MARFAT, G. GOTO, et F. BRION, J.Amer. Chem. Soc., 1980, 102, 7984 7986.
- Y. GUINDON, R. ZAMBONI, C.K. LAU et J. ROKACH, Tetrahedron Letters, 1982, 23, 739
 742.
- 9 Constantes physiques de $\underline{5}$: RMN ¹H (360 MHz, CDCl₃, TMS) δ 0.80(t ,3H), 1.35(m, 16H), 1.65(m, 2H), 2.60(t, 2H), 3.05(d,2H, J_{PH} = 23 Hz), 4.15(m, 4H) ; RMN ³¹P (CDCl₃) δ = +17.33;

IR(film, cm⁻¹)1710($v_{C=O}$), 1250($v_{P=O}$), 1020-960(v_{P-O});

Microanalyse C14H29O4P, C: 57.51, H: 9.99; Trouv. C: 57.32, H: 9.94;

SM(70 eV, IE, m/z); $M^{+\circ}$: 292(6%), 207($M^{+}-C_{6}H_{13}$, 100%),194($M^{+}-C_{7}H_{14}$,100%), 179($M^{+}-C_{8}H_{17}$, 96%) 152($M^{+}-C_{9}H_{16}O$, 71%), 137 ($M^{+}-C_{10}H_{19}O$, 18%), 123($M^{+}-C_{11}H_{21}O$, 61%) 109 ($M^{+}-C_{12}H_{23}O$, 42%).

- Constantes physiques de <u>6</u> : RMN ¹H (360 MHz, CDCl₃, TMS) δ 0.85(t, 3H), 1.30(m, 12 H), 1.95 (q, 2H), 3.05 (d, 2H, J_{PH} = 23 Hz), 3.35 (d, 2H, J_{3,4} = 6Hz), 4.10 (m, 4H), 5.55 (m, 2H, J_{4,5} = 10.7 Hz); RMN ³¹P (CDCl₃) δ = + 17.23; IR(film cm⁻¹) 1710(v_{C=O}), 1630 (v_{C=C}), 1250(v_{P=O}), 1020-960(v_{P-O});

SM (70 eV, IE, m/z) $M^+ = 290(19\%)$, 194 ($M^+-C_7H_{12}$, 31%), 179($M^+-C_8H_{15}$, 100%), 151($M^+-C_9H_{15}O$, 79%) 137($M^+-C_{10}H_{17}O$, 30%), 123($M^+-C_{11}H_{19}O$, 90%), 109($M^+-C_{12}H_{21}O$, 74%).

- 10 a) RMN du ³¹P (81.015 MHz) avec H₃PO₄ (référence externe.) dans THF / C₆D₆; + 26.21 ppm pour 1; +58.50 ppm (EtO)₂P(O)CH₂Li, instable à température > 40°C conduisant au dimère stable +39.38 et +38.03 ppm; +48.87 ppm (EtO)₂P(O)CH₂CuLi stable jusqu'à 0°C; +17.1 à +18.2 (EtO)₂P(O)CH₂C(O)R, variation de δ selon la nature de R.
 - b) 1.25 ppm pour (EtO)₂P(O)ONa, + 31.93 ppm. pour (EtO)₂P(O)CHC(O)RNa.
 - c) + 17.33 ppm pour <u>5</u>; + 17.33 ppm pour <u>5</u> + DBU; + 18.31 ppm pour <u>5</u> + LiCl; + 30.28 ppm pour <u>5</u> + DBU+ LiCl.
- 11 L'aldéhyde 11 est préparé par réaction de Wittig entre le dérivé 2 et le triphénylméthyléne phosphorane crotonaldéhyde, selon la méthode décrite par I. ERNEST, A.J. MAIN, et J. MENASSE, Tetrahedron Letters, 1982, 23, 167-170.
- 12 M.A. BLANCHETTE, W. CHOY, J.T. DAVIS, A.P. ESSENFELD, S. MASAMUNE, W.R. ROUSH et T. SAKAI, Tetrahedron Letters, 1984, 25, 2183-2186.
- 13 Constantes physiques de <u>12a</u> : RMN ¹H (360 MHz, CDCl₃, TMS) δ 0.80(t, H₂₀), 1.30(m, H₁₄-H₁₉ et CH₃ ester), 1.75(m, H₃), 1.95(m, H₄), 2.35(t, H₂), 2.60(t, H₁₃), 4.15(m, CH₂ ester), 5.90(m, H₇, J_{6,7} = 12.1 Hz), 6.01(m, H₅), 6.25(q, H₉, J_{8,9} = 15.25 Hz), 6.45(m, H₆), 6.70(d, H₁₁, J_{10,11} = 15 Hz), 7.35(q, H₁₀), 7.45, 7.50 et 7.60(m, C₆H₅ et H₈). UV (Cyclohexane) : λ max = 297 nm ; épaulements à 286 et 307 nm.

(Received in France 16 February 1990)